
Navigating the Future: Mobile Geolocation Search
with Spatial Freedom

Ole Kr. Aamot

7 January 2024 (Initial Draft)

Contents

iii

List of Figures

v

List of Tables

vii

Listings

ix

Chapter 1

Navigating the Future: Geopher
Mobile Geolocation Search with
Spatial Freedom

Introduction:
In the rapidly evolving landscape of technology, mobile geolocation search

has become an integral part of our daily lives, transforming the way we navigate
physical and digital spaces. This article explores the dynamic realm of mobile
geolocation search, emphasizing spatial freedom, and the convergence of latitude,
longitude, and altitude within the World Wide Web and Electronic Mail.

The Essence of Spatial Freedom:
Traditional geolocation systems primarily focus on latitude and longitude,

providing coordinates that define a point on the Earth’s surface. However, the
future of mobile geolocation search involves expanding this paradigm to include
altitude and embrace the concept of spatial freedom. Spatial freedom implies
the ability to move in any direction without constraints, breaking away from
traditional parallel systems and allowing for more nuanced and accurate positioning.

No-Paralleity: Redefining the Geolocation Paradigm:
The concept of no-paralleity challenges the traditional notion of parallel systems

in geolocation. Instead of adhering strictly to latitude and longitude lines, no-
paralleity envisions a dynamic, three-dimensional space where users can move
freely without being confined to predefined axes. This approach enables more
precise location tracking and opens the door to innovative applications across
various industries.

Free Movements in Space:
The integration of altitude into geolocation systems enriches the user experience

by providing information about vertical positioning. This is particularly valuable in
scenarios where altitude plays a crucial role, such as indoor navigation, aviation,
and augmented reality applications. Free movements in space encompass not only
lateral movement but also vertical mobility, creating a comprehensive understanding

1

2 Ole Kr. Aamot: The Implementation of www.geopher.com and www.move.place

of a user’s position in three-dimensional space.
World Wide Web Integration:
The World Wide Web has become an indispensable platform for information

access and communication. Integrating spatial freedom into the web environment
enhances location-based services. Whether it’s finding nearby businesses, navigating
complex structures, or interacting with augmented reality elements, the marriage
of spatial freedom and the World Wide Web creates a seamless and immersive
user experience.

Electronic Mail and Geolocation:
Email communication has transcended its traditional text-based format, incorporating

rich media and interactive elements. Geolocation in electronic mail opens up
new possibilities for context-aware communication. Imagine receiving an email
that not only contains textual information but also includes location-based data,
allowing users to visualize the sender’s location and associated spatial context.

Conclusion:
The future of mobile geolocation search is marked by spatial freedom, no-

paralleity, and the integration of latitude, longitude, and altitude in the World
Wide Web and Electronic Mail. This paradigm shift holds immense potential for
revolutionizing location-based services, navigation systems, and communication
platforms. As technology continues to advance, embracing spatial freedom ensures
that our digital experiences seamlessly align with our movements in the physical
world.

Appendix A

Haversine Computation of
geopher.com Geolocations:
geopher-location-computation-
search.py

The following Python program is a resolver for piperpal.com

Written by Ole Aamot, 20240107

from cgi import parse_qs, escape
from urllib import quote_plus
import cgi
import urllib3

import hashlib
from math import radians, cos, sin, asin, sqrt
import textwrap
from cgi import parse_qs, escape
from bs4 import BeautifulSoup
import cgi
import time

def piperpal_resolver(l,n,lat,lon):
p = http.request(’GET’, l)
o = p.data
y = BeautifulSoup(o, "lxml")
m = hashlib.sha256(p.data).hexdigest()
locationtags = y.find_all("location")
i = 0
print locationtags

3

4 Ole Kr. Aamot: The Implementation of www.geopher.com and www.move.place

while (i < len(locationtags)):
notbefore = y.findAll("location")[i]["notbefore"]
notafter = y.findAll("location")[i]["notafter"]
name = y.findAll("location")[i]["name"]
glat = y.findAll("location")[i]["lat"]
glon = y.findAll("location")[i]["lon"]

service = y.findAll("location")[i]["service"]
data = y.findAll("location")[i]
href = y.findAll("location")[i]["href"]
r = haversine(float(glat),float(glon),float(lat),float(lon))

print map
print(gindex(r,name,m,href,data,glat,glon,lat,lon))
for x in range(-90, 91):

for y in range(-180, 181):
print x,y,lat,lon,q,l,0
print x,y,lat,lon,q,l,1
for z in range(1, 11):

print x,y,lat,lon,q,l,z
linker = ’https://api.piperpal.com/location/robot.php?name=’ + quote_plus(q.encode(’utf-8’), safe=’:/’) + ’&service=’ + quote_plus(service.encode(’utf-8’), safe=’:/’) + ’&location=’ + quote_plus(l.encode(’utf-8’), safe=’:/’) + ’&glat=’ + glat + ’&glon=’ + glon + ’¬Before=’ + notbefore + ’¬After=’ + notafter + ’&paid=1’
insert = http.request(’GET’, linker)
print linker
print insert

#linker = ’https://api.piperpal.com/location/robot.php?name=’ + quote_plus(name.encode(’utf-8’), safe=’:/’) + ’&service=’ + quote_plus(service.encode(’utf-8’), safe=’:/’) + ’&location=’ + quote_plus(href.encode(’utf-8’), safe=’:/’) + ’&glat=’ + glat + ’&glon=’ + glon + ’&paid=1’
insert = http.request(’GET’, linker)
print linker
print insert
object = insert.data
tester = BeautifulSoup(object, "lxml")
macron = hashlib.sha256(insert.data).hexdigest()
i = i + 1

piperpal_resolver(href,n,lat,lon)
return (y,i)

def haversine(lat1, lon1, lon2, lat2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
"""
convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])

haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1

Chapter A: Haversine Computation of geopher.com Geolocations: geopher-location-computation-search.py5

a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * asin(sqrt(a))
r = 6371 # Radius of earth in kilometers. Use 3956 for miles
return c * r

def gindex(radius,n,d,l,query,my_lat,my_lon,lat,lon):
return radius,n,d,l,query,my_lat,my_lon,lat,lon

maps = dict()
maps[’Books’,’Food’] = dict()
http = urllib3.PoolManager()
q = ’Wikipedia’
p = 1
l = ’https://piperpal.com/piperpal.xml’;
lat = ’37.42242500’
lon = ’-122.08755550’
notbefore = ’2024-01-01’
notafter = ’2024-12-31’
service = ’Books’
piperpal_resolver(l,q,lat,lon)

